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The scattering of electromagnetic waves by arbitrarily oriented, infinitely long circular cylinders issolved by following the procedures outlined by van de Hulst. The far-field intensities for two cases of alinearly polarized incident wave are derived. The scattering coefficients involve the Bessel functions ofthe first kind, the Hankel functions of the second kind, and their first derivatives. Calculations aremade for ice cylinders at three wavelengths: 0.7 y, 3 , and 10 . The numerical results of intensity
coefficients are presented as functions of the observation angle . A significant cross-polarized compo-
nent for the scattered field, which vanishes only at normal incidence, is obtained. It is also shown thatthe numerous interference maxima and minima of the intensity coefficients due to single-particle effects
depend on the size parameter x as well as on the oblique incident angle a. Since cylinder-type particlesare often observed in ice clouds, the light-scattering calculations performed for a circular cylinder in this
paper should be of use in the study of cloud microstructure.

Introduction

While a great many computations have been carried
out for light scattering from spherical particles'- 4

based upon the exact solution given by Mie,' nothing of
a theoretical nature has been set down to predict
scattering from large nonspherical particles such as
occur in ice clouds. It is very important to understand
the angular scattering pattern of ice crystals in order to
investigate the radiative transfer through ice clouds.
And furthermore, it would be very useful if cloud
particles in the liquid and ice phases could be dif-
ferentiated by using light-scattering measurements.

A rigorous electromagnetic wave solution for hexag-
onal cylinders, which are often observed in ice clouds,6
appears likely to be impossible to obtain. As a theo-
retical approach, we consider in this study the ice crystal
that has the shape of a long cylinder with circular cross
section. As a result of this assumption, light-scattering
calculations for such arbitrarily oriented ice cylinders
may then be performed. The primary purpose of this
paper is therefore to provide some information on light
scattering from ice cylinders.

Scattering of plane waves at normal incidence for a
homogeneous dielectric infinite cylinder was solved by
Lord Rayleigh7 in 1917. Since then the solution has
been rederived and calculated several times. However,
it was not until 1955 that Wait" briefly derived a com-
plete solution for oblique incidence on the basis of the
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procedures developed by Stratton.' Little calculation
has been accomplished. In this study, we follow most
of the notations and procedures outlined by van de
Hulst0 to obtain solutions that are more appropriate
for numerical computations.

The scattering geometry for an infinitely long cylinder
at oblique incidence is discussed, and the solutions of
scattering coefficients and far-field intensities in spheri-
cal coordinates are derived. Computations for in-
tensity coefficients are performed for an incident wave-
length of 0.7 , using a circular radius of 5 u, and wave-
lengths of 3 and 10 with a circular radius of 10 .
The refractive indices for ice at these wavelengths were
taken from a paper by Irvine and Pollack.

Theory

Scattering Geometry
The scattering geometry is shown in Fig. 1. The z

axis of the cylindrical coordinates (r,O,z) is placed along
the central axis of the cylinder. The angle between the
incident ray and the negative z axis is denoted as x.
We further define a as an oblique incident angle which
is the complement angle of x. The x axis is defined in
the plane containing the direction of the incident ray
and the z axis. This plane defines the angles = 0
and 4 = w. The coordinate r is then contained on the
xy plane such that the cylinder occupies the region r <
a, where a is the cross-section radius of the cylinder.

The scattered radiation from an infinitely long cylin-
der is confined to the surface of a cone. To explain this
scattering geometry, let us consider a long cylinder
whose diameter is much larger than the incident wave-
length, so that the geometric optics may be applied.

March 1972 / Vol. 11, No. 3 / APPLIED OPTICS 667
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Fig. 1. Geometry for light scattered by an infinitely long cylin-
der. All symbols are explained in the text.

The rays externally reflected, refracted, or internally
reflected on the surface of the cylinder will follow the

well-known Snell laws, and consequently the emergent
angle and the incident angle are equal. Hence, the
scattering of light is confined to the surface of a solid
cone which forms an angle a with the xy plane (see Fig.
1).

The scattering angle 0, which is defined as the angle

between the directions of the incident wave and the

scattered wave, can easily be obtained:

cosO = sin2 a + cos2 a cosa . (1)

We define q5 as an observation angle to distinguish it

from the scattering angle. q5 and 0 become equal only
at normal incidence (a = 0). In all other cases, the
values of 0 are always less than that of q5. Thus, for an
infinite cylinder except at normal incidence, there is no
true backscattering.

As for the problem of polarization, we shall consider
two simple cases separately. One is when the electric
vector E vibrates parallel to the plane containing the

direction of the incident ray and the z axis (case 1),
while the other is when the electric vector E vibrates
perpendicular to this plane (case 2). From these two
cases, arbitrary elliptically polarized scattered light
may then be constructed by means of linear superposi-
tion from the two solutions.

Solutions of Scattering Coefficients

In this section we follow most of the notations used by

van de Hulst,' 0 who outlined the procedures for ob-

taining the scattering coefficients for light obliquely
incident on an infinitely long cylinder of a homogeneous
isotropic material. For a periodic electromagnetic field
with a circular frequency w, the well-known Maxwell
equations can be expressed as follows:

V X H = ikm2E,(

V X E = -ikH,

where k is the wavenumber in vacuum and m is the
complex refractive index of the scattering medium.
The electric and magnetic field vectors in a homo-

geneous medium satisfy the following vector wave equa-

tion:

v2A + km 2A = 0. (3)

Now, if satisfies the scalar wave equation

V2 F + k 2 m2 , = 0, (4)

it can be proved that vectors Map and NT in cylindrical
coordinates (r,ck,z) defined by

MT = V X (azd) = a.- a- a '
O T 1 (2,

mkNT = V X Ma = a, - + at z-

F a / 1 24j

r-Or-J 7- '

(5)

satisfy Eq. (3), where ar, ac, and a, are unit vectors.
Suppose that u and v are two orthogonal solutions of

Eq. (4), then the Maxwell equations (2) are satisfied by
the field vectors defined by

E =M,, + iN u, (6

H m(-Mu + iNj).(

The scalar wave equation (4) in cylindrical co-
ordinates can be expressed as:

~~~~1 a /, an O2, ~(r- + -+m 2 k 2 q,= 0. (7)
r Zr \Zbr/ r2 (2 +z 2

This equation is separable by letting I = R(r)I@(4))Z(z).
Since within a homogeneous, isotropic medium every
electromagnetic field may be represented by a linear
combination of elementary wavefunctions, then the
elementary solutions of Eq. (7) have the following
form:

= exp(iwt)Z(jr) exp(ink) exp(-ihz), (8)

where h is an arbitrary constant, n is an integer, j =
(m2k2 - h2)I, and Z. is any Bessel function of order n.

Since the cylinder is assumed to be infinitely long, the
field must be periodic in the z direction. Thus, two
solutions u and v in Eq. (6) contain cosno and sinno,
respectively. By virtue of Eqs. (5) and (7), Eq. (6)
may then be explicitly expressed as:

E = a(

H = a,

/ in h bu\
r mk r)

( Zv inh U) + i, (M2k - h2) 1

(inm U+a +L nh UJ

a ' bu inh Fi(m2k2 - h
2
) 1

+a m Or k V) + a L k 

(9)

Using the well-known addition theorem for Bessel
functions (see Stratton9 ) and noting that x = r coso,
the incident field (with amplitude unity) can be ex-
pressed as:

T = exp[iwt - ik(x cosa + z sina)] = E F.J,,(lr), (10)
n

where
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F = (j)n exp[i(wt + no - z)],

h = k sina,

I = k cosa.

It should be noted that n represents summation over
n from to + a. For scattered waves, the radial
function Zn is the Hankel function of the second kind
H (1r) which ensures the proper behavior of the field at
infinity. For internal waves, the radial function Zn is
the Bessel function of the first kind Jn(jr), which is
selected to ensure that the field is finite at r = 0.

Now we shall consider two simple cases separately.
First, the electric vector E is parallel to the xz plane
(vi = 0). This is sometimes called the TM mode.
We obtain the two solutions for the scalar wave equa-
tion inside and outside the cylinder as follows:

r>a,
Ui = E FJn(lr),

n

U = E -bniFnH)(1r),

nv- E -a.,F.H2),(1r), 11

r < a,

ut = E dnFnJn(jr),
n

t = cnFnJn(jr),
n

where the superscripts i, s, and t represent the incident,
scattered, and internal fields, respectively. It should
be noted that although v = 0, Vs and vt will not be zero
due to the oblique incidence. For the second case, the
electric vector E perpendicular to the xz plane (u = 0),
we obtain (TE mode):

r> a,

E FnJn(lr),
n

V. T E -an2FH.(lr),
n

U' = bnFnH(2)(1r), (12)
n

r < a,

Ut
dnFnJn(jr),

n

Vt E cn2 FnJn(jr).
n 

It is seen that case 1 and case 2 differ only in the initial
conditions u1 = 0 or vi = 0.

The boundary conditions require that the tangential
components of E and H be continuous at the interface,
i.e.,

By virtue of Eqs. (9) and (11) and Eqs. (9) and (12),
we get two sets of four linear equations for coefficients
an, bn, Cn, and dn from Eq. (13). After making some
algebraic operations, we obtain the scattering coef-
ficients an and b as follows:

b. P. Q.2 + A.(&1)B.(P,2)
n QnP + An(&!)An(&2)'

Qn 2 + Bn(&,)A.(g,2)
Qn2 + An(8,)An(,2)(

ani = -bn2 = PnQn An(81) - Bn,(&,)
Qn 2 + A,,(F)A,,(82)

where An(81,2) = j H -(la) -

B.(;1,2) = J( - 21 J(ja)

(14)

P. = J(la)/H(2'(1a),

Q. = inh(l2 - j 2)/Xlj

x = ka = 27ra/X, X = wavelength.

At this point, the solutions for scattering coefficients are
complete. The primes over the Bessel functions of the
first kind and the Hankel functions of the second kind
denote the differentiation with respect to the whole
argument. If we let a = 0 (normal incidence), an,
bn2 = 0, the scattering coefficients bn, and an, can be re-
duced to the forms presented by van de Hulst. l0 While
the assumption is made that the cylinder is infinitely
long, the solutions for scattering coefficients, however,
should be applied to a finite cylinder whose length is
much larger than its diameter with rather good ac-
curacy. The wavenumber contained in Eq. (14) can
be canceled out, except when it is coupled with the
radius a. Thus, bn, an, and an, are readily adaptable
to machine calculations. We should note that these
coefficients depend on the refractive index m, the size
parameter x, and the oblique incident angle a. In the
next section we obtain the expressions for the scattered
intensities at far field.

Intensities at Far Field

At far field, the asymptotic form for the Hankel func-
tion of the second kind is

HY.(1r) (2/7rlr)- exp[-ilr + i(2n + 1)7r/4J, (lr)-> a. (15)

From Eqs. (11) and (12), we obtain readily the values
of us and Vs at a great distance. For case 1, they are
(similar discussions hold for case 2; we neglect the de-
tails for simplicity):

us = ( )I exp[i(t - hz - r) - i3,/4]Z bnl cosno,

vs = ( ) expi(cot - hz - r) - i3/4] an sinned.
7r~~~~~~r ~~~n

(16)

Eki + E = E 0t, H,,i + Ha = Hkt, 

Ei + E;, = Et, Hi + H = H tf at r = a. (13)

By neglecting terms of the order of (1/r) higher than
(1/r), we can express the three components of electric
field at a great distance from Eq. (9):
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Erg - -ik sina cosa u8,

E,5 - ik cosa v, (17)

Ez8 ik COS2a Us.

We would like to express the resulting field in spheri-

cal coordinates (R,O,4), where R represents the distance

of the propagation of waves. By using the following
relationships:

ER = Er cosa + E, sina, (18)

Eo = -E, sina + E, cosae,

we obtain immediately the electric field in spherical co-

ordinates:

ER$ ' 0

Eo' ik cosa ( 2 )
\7rkR}

X exp(iwt - ikR - i3ir/4) E b,,, cosnk,
nS

Eets - ik cosa ( 2 
\7rkR/

X exp(icot - ikR - i3r/4) E an, sinnq,
n

where R = r cosa + z sina. Thus, if light of intensity
I(W/m 2), which is polarized parallel (case 1) or

perpendicular (case 2) to the plane containing the

direction of the incident ray and z axis, is incident on

the cylinder with an incident angle a, the intensities of

the scattered light in any direction are

Iil = 2iIo/7rkR,

112 = 2iu2Io/rkR,

I22 = 2i22 Io/rkR,

I21 = 2i2uo/7rkR,

case 1,

case 2,

where the intensity coefficients are defined as

ill = b, + 2 E b, cosn2,
n=l

i12 = 2 E a,,, sinn2,
n=i

i22 = aO2 + 2 E an2 cosnq|k|

i 21 = 2 E bn2 sinnOJ2 I
'Si

and i12 = i21.

Ill and 122 are the scattered intensities that lie in the

same plane as the incident intensities, while I12 and '2l

are the cross-polarized (or depolarized) scattered in-

tensities that have directions perpendicular to the in-

cident intensities. The intensity coefficients illi2 and
i 2 2 ,i 2 1 have meaning similar to ii and i2 in the case of the

spherical particles. In the next section, we present

numerical results for ill, i 2 2 , and i12 as functions of ob-

servation angles 0 for a given angle a.

Results
The computations for intensity coefficients ill, i22 ,

and i 2 are rather simple except for the scattering co-

efficients an and bi, which involve the Bessel functions of

the first kind, the Hankel functions of the second
kind, and their first derivatives. The Hankel func-
tion of the second kind for any argument x is

H(.)(x) = J,,(x) - iY,(x), (24)

where Y. is the Bessel function of the second kind. The

numerical computations were carried out on an IBM
360/95 computer using a Fortran program. The Bessel

functions were evaluated by employing the IBM
scientific subroutines which were based on the technique
developed by Abramowitz and Stegun.1 2

In this study, three cases have been chosen for light-
scattering computations; the first is a cylinder of 5-s

circular radius with an incident wavelength of 0.7 Mu, the

second and third are cylinders of circular radii of 10 gi

with incident wavelengths of 3 MA and 10 ., respectively.
The refractive indices for ice at these three wavelengths
were obtained from the values tabulated by Irvine and
Pollack," and the calculations were made at 361 obser-

vation angles, 00 (0.50) 1800.
Figure 2 represents the intensity coefficients for light

scattered by the cylinder of circular radius 5 A with an

incident wavelength of 0.7 A. The real part of the re-

fractive index for ice at this visible wavelength is 1.31,

with the imaginary part being negligible. The size

parameter x in this case is equal to 44.88. The plots

are presented in such a way that the scattered intensity
coefficients, which change with the incident angle a,

can be clearly shown. In the upper part of this figure

are the two extreme cases for a of 50 and 850. One

represents near-normal incidence (a = 50), while the
other denotes the incidence almost parallel to the

cylinder (a = 850). It should be noted that when a =
900, i.e., the incident beam is parallel to the z axis of the
cylinder, the values of an and bn are indefinite. This is

the case of singularity. Physically this means that the
cylinder does not scatter light at all, since an infinitely
long cylinder is being considered here. For an incident
angle of 50, the number of maxima and minima fluctua-
tions due to the single-particle effects is approximately
equal to the size parameter x. Around an observation
angle of 1400, a general maximum indication for ill is

seen which is quite similar to the case of Mie spherical

particles (rainbow region). For a large oblique incident

angle of 850, the scattering pattern for both ill and i2 2

becomes very simple and nearly symmetrical, with a

minimum at an observation angle of 900. The lower

part of Fig. 2 shows the intensity coefficients ill and i 2 2

for incident angles a of 450 and 700. We choose these

two angles to show two intermediate scattering pat-

terns. The number of maxima or minima of ill and i2 2

for a of 450 decreases to 27, while for a of 700, there are

only 11. Generally, the values of intensity coefficients
seem to decrease with increasing a. Moreover, a pro-
nounced diffraction peak is noted at forward directions

for small oblique incident angles of 50 and 45'.
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Fig. 2. Intensity coefficients ill (left-hand side) and i2 2 (right-hand side) as functions of observation angle for light scattered by acylinder of circular radius a of 5 ,u with incident wavelength X of 0.7 U. The upper parts are for oblique incident angles a of 50(solid line) and 850 (dotted line). The lower parts are for oblique incident angles of 450 (solid line) and 700 (dotted line).

The cross-polarized intensity coefficient i 2 for four
oblique incident angles is shown in Fig. 3. When a =
50, values of i 2 are generally very small, as can be
expected, since at normal incidence this cross-compo-
nent vanishes. The number of maxima and minima
again decrease with increasing a. At observation
angles of 0 and 1800, the cross-components i 2 for
these two cases equal zero, i.e., the scattered light re-
tains the same polarization as that of the incident radia-
tion. Compared to Fig. 2, it is seen that i 2 has values

comparable with those of in and i2 2 except at the very
forward observation angles.

Figure 4 shows the intensity coefficients in and i22 for
light scattered by an ice cylinder of circular radius 10 A
with an incident wavelength of 10 ,. The size param-
eter x is equal to 6.28 in this case. The real and
imaginary parts of the refractive index are 1.152 and
0.0413, respectively, for a wavelength of 10 u. Ab-
sorption is expected to take place inside the cylinder.
Since we consider a long cylinder such that its size is
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much larger than the incident wavelength in this
study, the light may be considered as consisting of
separate localized rays which travel along straight-line
paths. 4"l0 The absorption depends on the optical path
of the rays refracted and those internally reflected
several times in the cylinder. The solid and dotted
lines and the combinations of the dotted lines and black
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dots in this figure (and also Figs. 5 and 6) represent
oblique incident angles a of 5, 450, and 850, respec-
tively. For a of 50 and 450, the diffraction peak at the
forward direction can be easily seen and since the size
parameter is quite small, few maxima and minima are
presented. When a is 850, the patterns for both in-
tensity coefficients ill and i22 become nearly symmetrical

30 60 90 120 150 180

OBSERVATION ANGLE cb

Fig. 3. Same as Fig. 2, but for cross-polarized intensity coefficient i12.

30 60 90 120 150 180 0 30 60 90 120 150 180

OBSERVATION ANGLE 

Fig. 4. Intensity coefficients i (left-hand side) and i 2 (right-hand side) as functions of observation angle for light scattered by a

cylinder of circular radius a of 10 p with incident wavelength X of 10,u. Solid lines, dotted lines, and combinations of solid lines

and dotted lines are for oblique incident angles a of 50, 450, and 850, respectively.
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Fig. 5. Same as Fig. 4, but the incident wavelength X is 3 p.

0 30 60 90 120 150 180 0 30 60 90 120 120 180
OBSERVATION ANGLE 4

Fig. 6. Te cross-polarized intensity coefficient i as a function of observation angle q for light scattered by a cylinder of circularradius a of 10 p with incident wavelengths X of 10 p (left-hand side) and 3 (right-hand side).
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and their values are very similar. This means that
scattering of light for a large oblique incident angle has

no preference for the state of polarization of the incident

energy. A minimum at the observation angle of 900

and two maxima with values near unity at = = 00 and
1800 are shown.

Figure 5 represents the intensity coefficients ill and i2 2

for a cylinder of circular radius of 10 A with an incident

wavelength of 3 A, which corresponds to a size parameter

of 20.94. The refractive index for ice at 3 A is 1.13 and

0.2273 for the real and imaginary parts, respectively.

The absorption component is quite large. As a result,

the rays refracted into or internally reflected in the

cylinder are mostly absorbed. We can see that at

observation angles larger than about 800, almost no

fluctuation occurs because the source of the scattered

light comes primarily from the rays which undergo ex-

ternal reflection only. The maxima and minima shown

near the smaller observation angles are mainly caused

by rays that pass by the cylinder and form a dif-

fraction pattern. Once again, for a of 850, two similar

and nearly symmetrical patterns for values of ill and

i2 2 are obtained. The values of ill and i2 2 in Fig. 5 are

in general greater than those in Fig. 4 because the size

parameter in the former is about three times larger.
The cross-polarized intensity coefficient i12 for the

above two cases is shown in Fig. 6. Their values seem

to increase as the oblique incident angle increases, as

can be easily observed in this figure. When a = 850,

the maximum value for i12 is about unity in both cases.

The zero values at observation angles of 00 and 1800

again indicate that the scattered light retains the state
of polarization of the incident energy.

Concluding Remarks

A solution for the scattering of electromagnetic waves

by arbitrarily oriented, long cylinders, which are as-

sumed to be homogeneous and isotropic but otherwise

arbitrary, has been given. The scattering coefficients

are obtained from boundary conditions and are suitable

for computer calculations. Values of far-field inten-

sities are expressed in a spherical coordinate system.

The scattered light is shown to be confined to a solid

cone the size of which depends on the oblique incident

angle. For light that is not at normal incidence, there
is no direct backscattering.

We have made light-scattering calculations for ice

cylinders at three different incident wavelengths:
0.7 ,u, 3 p, and 10 1p. A strong diffraction pattern at the

very forward direction for scattered intensities, which

retain the same state of polarization as the incident in-
tensities, is obtained. This diffraction component
strongly depends on the size parameter. Moreover,

the results show a very significant cross-polarized in-

tensity for light obliquely incident on the cylinder.

This cross-component disappears at normal incidence,

which is similar to the case of scattering from a spherical

particle. This is due to the fact that the cylinder is

symmetrical with respect to the incident light.

The fluctuations of the scattered intensities due to
single-particle effects increase with increasing size

parameter, but decrease with increasing oblique incident
angle. The scattering patterns become rather simple
and symmetrical for light incident nearly parallel to the
axis of the cylinder. Thus, one application of this re-

sult can be achieved by observing the scattering pat-
tern at a.sufficiently large oblique incident angle, so

that the size of the cylinders may be determined with
less fluctuated data.
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